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Abstract
Nonstandard bases for finite dimensional irreducible representations of the
quantum algebra suq(2) are constructed by diagonalizing one-parameter
families of the operators qJ3/4(J+ + J−)qJ3/4 + cqJ3 and iqJ3/4(J+ − J−)qJ3/4 +
cqJ3 , c ∈ R. We derive explicit expressions for the eigenfunctions and
the corresponding eigenvalues of these operators in an arbitrary irreducible
representation of suq(2). It is shown that the matrix elements of the intertwining
operator Aj(c), which is a q-extension of the classical su(2)-operator aj ,
J1a

j = ajJ3, are expressed in terms of the dual q-Krawtchouk polynomials.
Diagonalization of some other operators, associated with the dual q-Hahn
polynomials, is also examined.

PACS numbers: 02.20.Uw, 02.30.Gp, 03.65.Fd

1. Introduction

In [1] an explicit expression for the eigenfunctions and the corresponding eigenvalues of
the operator J̃ 1 ≡ (

q1/4J+ + q−1/4J−
)
qJ3/2 in an arbitrary finite dimensional irreducible

representation of the quantum algebra suq(2) was derived. The basis consisting of these
eigenfunctions is called nonstandard in order to distinguish it from the standard canonical
basis, which is formed by the eigenfunctions of the operator J3. It was shown in [1] that the
canonical and nonstandard bases are connected by a matrix with entries, expressed in terms of
the dual q-Krawtchouk polynomials of a special type. A motivation for studying operators such
as J̃ 1 comes from mathematical and theoretical physics. Many models in quantum optics, such
as Raman and Brillouin scattering,parametric conversion and the interaction of two-level atoms
with a single-mode radiation field (Dicke model), can be described by interaction Hamiltonians
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of the form J̃ 1 (see, e.g., [2] and references therein). A complementary motivation for
studying different bases arises from mathematics, namely, from the theory of special functions
and in particular orthogonal polynomials [3–6] (see also [7, 8]). Studies in q-analysis and
q-special functions are important in the construction of a renovated background for field theory
model building.

One can diagonalize more general representation operators by using the same technique

as in [1]. We show in the present paper that the one-parameter family of operators J̆
(c)

1 = J̃ 1 +
cqJ3 , c ∈ R, in an arbitrary irreducible representation of suq(2) can also be diagonalized. We
find an explicit form of eigenfunctions of these operators and the corresponding eigenvalues.

For each value of c, the eigenfunctions of the operator J̆
(c)

1 constitute a nonstandard basis
of the representation space. We thus derive a one-parameter family of nonstandard bases for
each finite dimensional irreducible representation of the quantum algebra suq(2). We show
that these nonstandard bases are connected with the canonical basis by a matrix with entries
expressed in terms of more general dual q-Krawtchouk polynomials than in the case of the
operator J̃ 1.

Further, we derive, for each value of c, an explicit formula for the action of the operator
q−J3 upon the corresponding nonstandard basis. This action is given by a Jacobi matrix (that
is, a matrix with only three nonvanishing diagonals).

Having an explicit form of the operators J̆
(c)

1 and q−J3 , one may find (by multiplying them
and using their linear combinations) an explicit form of many other representation operators.
However, we could not find an explicit form for the action of the operators qJ3 , qJ3/2, q−J3/2. If
we could obtain the last operators, we would be able to calculate any representation operator.

We also show that some other representation operators of suq(2) can be diagonalized by
means of the dual q-Hahn polynomials. These operators also form a one-parameter family
of representation operators. We have explicitly constructed the corresponding one-parameter
family of nonstandard bases.

The results of the paper are true for any complex value of q not equal to a root of
unity. We only assume that q is positive when we use the orthogonality relation for the dual
q-Krawtchouk polynomials.

2. The algebra suq(2) and its representations

For any fixed complex value of q, the algebra suq(2) can be defined as an associative algebra
generated by the elements J1, J2 and J3, satisfying the relations

[J1, J2] = i

2
[2J3]q [J2, J3] = iJ1 [J3, J1] = iJ2 (2.1)

where

[A]q := qA/2 − q−A/2

q1/2 − q−2/2
.

In terms of the raising J+ = J1 + iJ2 and lowering J− = J1 − iJ2 operators relations (2.1) take
the form

[J+, J−] = [2J3]q [J3, J±] = ±J±.

Nontrivial finite dimensional irreducible representations of the algebra suq(2) are given by
positive integers or half-integers j . We denote these representations by Tj .

The linear space of the irreducible representation Tj can be realized as the space Hj of
all polynomials in x of degree less or equal to 2j . The operators J3 and J± are realized in this
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space as

J3 = x
d

dx
− j J+ = x

[
2j − x

d

dx

]
q

= x[j − J3]q

(2.2)

J− = 1

x

[
x

d

dx

]
q

= 1

x
[j + J3]q .

The canonical basis of the space Hj consists of monomials

f j
m(x) = cj

mxj+m cj
m = q(m2−j2)/4

[
2j

j + m

]1/2

q

(2.3)

where the q-binomial coefficient
[

m

n

]
q

is defined as (we employ the standard notations of
q-analysis; see, for example, [9, 10])[m

n

]
q

:= (q; q)m

(q; q)n(q; q)m−n

= (−1)nqmn−n(n−1)/2 (q−m; q)n

(q; q)n
(2.4)

and

(z; q)0 = 1 (z; q)n =
n−1∏
s=0

(1 − zqs) n = 1, 2, 3, . . . . (2.5)

We equip the space Hj with the scalar product for which the monomials f
j
m(x), m =

−j,−j + 1, . . . , j , form an orthonormal basis of Hj .
In the canonical basis (2.3) the operators J3 and J± act as

J3f
j
m(x) = mf j

m(x) J±f j
m(x) = [j ± m + 1]1/2

q [j ∓ m]1/2
q f

j

m±1(x). (2.6)

Obviously, the operatorJ3 is diagonal in the canonical basis. We are interested in diagonalizing
other operators from the representations Tj .

It was shown in [1, 2] that one can diagonalize the operator

J̃ 1 := 1
2qJ3/4(J+ + J−)qJ3/4 = 1

2

(
q1/4J+ + q−1/4J−

)
qJ3/2.

In addition to the operator J̃ 1, it is in fact natural to consider another operator J̃ 2, defined as

J̃ 2 = −i[J3, J̃ 1] = 1

2i
qJ3/4(J+ − J−)qJ3/4.

The operators J̃ 1, J̃ 2 and J3 obey the commutation relations

[J3, J̃ 1] = iJ̃ 2 [J̃ 2, J3] = iJ̃ 1 [J̃ 1, J̃ 2] = iJ̃ 3

where

J̃ 3 := 1
2qJ3/2(q1/2J−J+ − q−1/2J+J−

)
qJ3/2.

Note that the operator J̃ 3 is diagonal in the canonical basis (2.3), namely,

J̃ 3f
j
m(x) = 1

2qm
({2j + 1}q − qm{1}q

)
f j

m(x)

where

{A}q := qA/2 + q−A/2

q1/2 − q−1/2
.

Our aim in the next section is to diagonalize the operators

J̆ 1 := J̃ 1 + cqJ3 ≡ 1
2

(
q1/4J+ + q−1/4J−

)
qJ3/2 + cqJ3 (2.7)

J̆ 2 := J̃ 2 + cqJ3 ≡ 1

2i

(
q1/4J+ − q−1/4J−

)
qJ3/2 + cqJ3 . (2.8)
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3. Nonstandard bases and diagonalization of the operators

It proves convenient to represent the real parameter c in (2.7) and (2.8) in the form

c = 1

2
[2σ ]q ≡ 1

2

qσ − q−σ

q1/2 − q−1/2

and to denote the operators J̆ 1 and J̆ 2 as J̆
(σ )

1 and J̆
(σ )

2 , respectively, in order to indicate their

dependence on σ . We begin with eigenfunctions and eigenvalues of the operator J̆
(σ )

1 , defined
by (2.7).

By analogy with the operator J̃ 1 (see [1]), let us look for eigenfunctions of J̆
(σ )

1 of the
form

χj
m(x; σ) = (αx; q)j−m(−βx; q)j+m (3.1)

where α and β do not depend on x, but may be q and σ dependent. It is assumed in (3.1) that
m is an integer or a half-integer such that −j � m � j and j − m ∈ Z. We need to find the
explicit form of α and β from the requirement that

J̆
(σ )

χj
m(x; σ) = 1

2 [2M]qχ
j
m(x; σ)

where [2M]q/2 are some eigenvalues. Since

qcx d
dx f (x) = f (qcx) (3.2)

for any real c and an arbitrary function f (x), we have

qJ3χj
m(x; σ) = q−jχj

m(qx; σ). (3.3)

From (2.2) and (3.2) it also follows that

J+q
J3/2χj

m(x; σ) = q−j/2x

q1/2 − q−1/2

{
qjχj

m(x; σ) − q−jχj
m(qx; σ)

}
. (3.4)

Similarly,

J−qJ3/2χj
m(x; σ) = q−j/2

x
(
q1/2 − q−1/2

){χj
m(qx; σ) − χj

m(x; σ)
}
. (3.5)

From the definition (2.5) of the q-shifted factorial (z; q)n it is easy to deduce that

(qz; q)n = 1 − zqn

1 − z
(z; q)n. (3.6)

Therefore

χj
m(qx; σ) = (1 − αxqj−m)(1 + βxqj+m)

(1 − αx)(1 + βx)
χj

m(x; σ). (3.7)

In accordance with (2.7), it now remains only to multiply (3.3) by [2σ ]q/2, (3.4) by q1/4/2
and (3.5) by q−1/4/2, and then sum up the results. Then we obtain the following equation:

J̆
(σ )

1 χj
m(x; σ) = Ax2 + Bx + C

2
(
q1/2 − q−1/2

)
(1 − αx)(1 + βx)

χj
m(x; σ) (3.8)

where the constant coefficients A,B and C are equal to

A = q(2j+1)/4(β − α) − qj (qσ − q−σ )αβ − (βqm − αq−m)q(1−2j)/4

B = q(2j+1)/4(1 − q−2j )
(
1 − qj−1/2αβ

)
+ (qσ − q−σ )(βqm − αq−m) (3.9)

C = q−(2j+1)/4(α − β) + q−j (qσ − q−σ ) + q(2j−1)/4(βqm − αq−m)
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respectively. We will obtain eigenvalues of the operator J̆
(σ )

1 on the right-hand side of (3.8),
provided that Ax2 +Bx +C = C(1−αx)(1+βx). This relation is equivalent to two equations:
A = −αβC and B = (β−α)C. For each fixed integer or half-integer m such that −j � m � j

and j − m ∈ Z, the only solution of this inhomogeneous system (see (3.9)) of equations in α

and β is α = q(1−2j)/4−σ and β = q(1−2j)/4+σ . Consequently, C = qm+σ − q−m−σ . We may
thus formulate the following assertion.

For any real σ the operator J̆
(σ )

1 can be diagonalized and its eigenfunctions are

χj
m(x; σ) = (

q(1−2j)/4−σ x; q
)
j−m

(−q(1−2j)/4+σx; q
)
j+m

. (3.10)

The functions χ
j
m(x; σ), m = −j,−j + 1, . . . , j , are linearly independent because they

correspond to distinct eigenvalues [2(m + σ)]q/2:

J̆
(σ )

1 χj
m(x; σ) = 1

2 [2(m + σ)]qχj
m(x; σ). (3.11)

The number of these eigenfunctions coincides with a dimension of the representation Tj .
Therefore, these functions constitute a nonstandard basis of the representation space Hj .

Let us understand now how the eigenfunctions χ
j
m(x; σ) are related to the canonical

basis f
j
m(x) = c

j
mxj+m. This can be easily derived using a generating function for the dual

q-Krawtchouk polynomials. We remind the reader that the terminating basic hypergeometric
series k+1φk with k + 1 numerator parameters q−n, a1, . . . , ak and k denominator parameters
b1, . . . , bk is explicitly given by the formula (see [9] or [10])

k+1φk

(
q−n, a1, . . . , ak

b1, . . . , bk

∣∣∣∣ q; z

)
=

n∑
j=0

(q−n; q)j(a1; q)j · · · (ak; q)j

(q; q)j(b1; q)j · · · (bk; q)j
zj . (3.12)

Therefore the relation (see [10], p 101)

Kn(λ(t); c,N |q) := 3φ2

(
q−n, q−t , cqt−N

q−N, 0

∣∣∣∣ q; q

)

= (qt−N ; q)nq
−nt

(q−N ; q)n
2φ1

(
q−n, q−t

qN−t−n+1

∣∣∣∣ q; cqt+1

)
(3.13)

where λ(t) = q−t + cqt−N , for n = 0, 1, . . . , N, defines the dual q-Krawtchouk polynomials,
which are orthogonal on the set t ∈ {0, 1, . . . , N}. They have a generating function of the
form (see [10], p 103)

(q−Nt; q)N−k(cq
−Nt; q)k =

N∑
n=0

(q−N ; q)n

(q; q)n
Kn(λ(k); c,N |q)tn 0 � k � N. (3.14)

From (3.14) it is obvious that the eigenfunctions (3.10) can be written as

χj
m(x; σ) =

2j∑
n=0

qn(n+2σ−j−1/2)/2

[
2j

n

]
q

Kn(λ(j − m); −q−2σ , 2j |q)xn (3.15)

using relation (2.4) for the q-binomial coefficient. Combining (2.3) with (3.15), we get

χj
m(x; σ) =

j∑
m′=−j

q(j+m′)(j+m′+4σ−1)/4

[
2j

j + m′

]1/2

q

Kj+m′(λ(j − m); −q−2σ , 2j |q)f
j

m′(x).

(3.16)

The basis
{
χ

j
m(x; σ)

}j
−j

is orthogonal but not normalized. The functions

χ̂ j
m(x; σ) := cmχj

m(x; σ) m = −j,−j + 1, . . . , j
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where

cm = (−q−σ )j−mq(j−m)(3j+m)/2

×
(

(−q−2σ−2j ; q)j−m(q−2j ; q)j−m(1 + q−2σ−2m)

(−q2σ ; q)2j (q; q)j−m(−q2σ+1; q)j−m(1 + q−2σ−2j )

)1/2

(3.17)

form an orthonormal basis of Hj . This is because the matrix
(
a

j

m′m
)

with entries

a
j

m′m = cmq(j+m′)(j+m′+4σ−1)/4

[
2j

j + m′

]1/2

q

Kj+m′(λ(j − m); −q−2σ , 2j |q) (3.18)

which connects the bases
{
χ̂ j

m(x; σ)
}j
−j

and
{
f

j

m′
}j

−j
, is unitary (due to the orthogonality

relation (3.17.2) in [10] for the dual q-Krawtchouk polynomials).

Remark. Note that we could derive (by using the connection (3.16) between the bases
{
f

j

m′
}

and
{
χ

j
m

}
) the orthogonality relation for the dual q-Krawtchouk polynomials. This derivation

could be based on the use of the theory of selfadjoint operators, which can be represented
by Jacobi matrices (see chapter VII in [11], in particular, formula (1.21) in this chapter).
However, we have not engaged into such derivation here for the following reason. The dual
q-Krawtchouk polynomials are a special case of the more general q-Racah polynomials and
there exists a simple proof of the orthogonality relation for the latter (and, consequently, for
the former) polynomials by means of the Racah coefficients for the algebra suq(2) (see [5],
vol 3, section 14.6.5, formula (5)).

Eigenfunctions and eigenvalues of the operator J̆
(σ )

2 can be obtained in exactly the same

way as for the operator J̆
(σ )

1 . Therefore, we only state the result. Eigenfunctions of J̆
(σ )

2 have
the form

ξj
m(x; σ) = (iαx; q)j−m(−iβx; q)j+m = χj

m(ix; σ) (3.19)

where α = q(1−2j)/4−σ and β = q(1−2j)/4+σ . The eigenvalues of J̆
(σ )

2 coincide with those of

the operator J̆
(σ )

1 :

J̆
(σ )

2 ξj
m(x; σ) = 1

2 [2(m + σ)]qξ j
m(x; σ).

The functions ξ̂
j
m(x; σ) := cmξ

j
m(x; σ), where m = −j,−j + 1, . . . , j and the cm are

the same as in (3.17), form an orthonormal basis of Hj . The eigenfunctions ξ̂
j
m(x; σ) are

connected with the canonical basis by the formula ξ̂
j
m(x; σ) = ∑j

m′=−j b
j

m′mf
j

m′ (x), where

b
j

m′m = (−i)j
′+ma

j

m′m and a
j

m′m are given by (3.18).

4. Intertwining operator

In this section we derive an explicit form of an operator Bj (σ ) that intertwines J̆
(σ )

1 and

[2(J3 + σ)]q/2. Using definition (2.7) of the operator J̆
(σ )

1 and formulae (2.6) for the action of
the operators J3 and J± on the canonical basis, we write the matrix form of the relation

2J̆
(σ )

1 Bj (σ ) = Bj(σ )[2(J3 + σ)]q

in the canonical basis (2.3). As a result we obtain an equation which relates the matrix elements
B

j

mm′(σ ) of the operator Bj(σ ) in the canonical basis:

q(2m−1)/4
√

[j + m]q[j − m + 1]qB
j

m−1,m′ (σ ) + q(2m+1)/4
√

[j − m]q[j + m + 1]qB
j

m+1,m′ (σ )

= ([2(m′+σ)]q − qm[2σ ]q)B
j

m,m′ (σ ). (4.1)
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To dispense with square roots in (4.1), we make the substitution

B
j

m,m′ (σ ) = qmσ+[m2−j2+m(2j−1)]/4

[
2j

j + m

]1/2

q

B̃
j

m,m′ (σ ). (4.2)

After some simplification, we obtain for B̃
j

m,m′ (σ ) the recurrence relation

(1 − qm−j )B̃
j

m+1,m′ (σ ) − q−2j−2σ (1 − qj+m)B̃
j

m−1,m′ (σ )

= q−j [qm′ − qm + (qm − q−m′
)q−2σ ]B̃

j

m,m′ (σ ). (4.3)

If one compares it with the recurrence relation (see [10], p 102)

(1 − qn−N)Kn+1(λ(t); c,N |q) + cq−N(1 − qn)Kn−1(λ(t); c,N |q)

= [λ(t) − (1 + c)qn−N ]Kn(λ(t); c,N |q)

for the dual q-Krawtchouk polynomials with the parameters

n = j + m N = 2j c = −q−2σ

t = j − m′ λ(j − m′) = qm′−j − q−2σ−j−m′

then it becomes evident that

B̃
j

m,m′(σ ) = Kj+m(λ(j − m′); −q−2σ , 2j |q)bj(m
′) (4.4)

where bj (m
′) is some arbitrary function of the index m′. Substituting (4.4) into (4.2), we

obtain

B
j

m,m′ (σ ) = qmσ+[m2−j2+m(2j−1)]/4

[
2j

j + m

]1/2

q

Kj+m(λ(j − m′); −q−2σ , 2j |q)bj(m
′). (4.5)

Since intertwining operators are always defined up to the multiplication by an arbitrary diagonal
operator and K0(x(s); c,N |q) = 1 by the initial condition, it is convenient to represent (4.5)
in the form (cf (3.15))

B
j

m,m′ (σ ) = q(j+m)[σ+(j+m−1)/4]

[
2j

j + m

]1/2

q

Kj+m(λ(j − m′); −q−2σ , 2j |q)B
j

−j,m′(σ ). (4.6)

An intertwining operator for the operators J̆
(σ )

2 and [2(J3 + σ)]q/2 is constructed in
exactly the same way.

5. Representation operators in nonstandard bases

We have found new (nonstandard) bases in the space of the representation Tj and have

determined how the operator J̆
(σ )

1 acts upon the corresponding basis. Let us now calculate
how the operator q−J3 acts upon this basis.

Using formulae (3.3) and (3.13), we find that

q−J3χj
m(x; σ) = qjχj

m(q−1x; σ)

= qj

2j∑
n=0

qn(n+2σ−j−1/2)/2

[
2j

n

]
q

q−nKn(λ(j − m); −q−2σ , 2j |q)xn. (5.1)

The dual q-Krawtchouk polynomials in this expression satisfy the q-difference equation

q−nKn(λ(t)) = B(t)Kn(λ(t + 1)) + [1 − B(t) − D(t)]Kn(λ(t)) + D(t)Kn(λ(t − 1)) (5.2)



5274 N M Atakishiyev and A U Klimyk

where Kn(λ(t)) ≡ Kn(λ(t); c,N |q) and

B(t)= (1 − qt−N)(1 − cqt−N)

(1 − cq2t−N)(1 − cq2t−N+1)
D(t)= cq2t−2n−1(1 − qt)(1 − cqt )

(1 − cq2t−N−1)(1 − cq2t−N)
(5.3)

(see formula (3.17.5) in [10]). Substituting the right-hand side of (5.2) into (5.1), we obtain
the following formula for the action of the operator q−J3 :

q−J3χj
m(x; σ) = qjBσ (j,m)χ

j

m−1(x; σ) + qjDσ (j,m)χ
j

m+1(x; σ)

+ qj [1 − Bσ (j,m) − Dσ (j,m)]χj
m(x; σ) (5.4)

where, in accordance with (5.3),

Bσ (j,m) = −q2m+2σ−2j−1 (1 − qj+m)(1 + qj+m+2σ )

(1 + q2m+2σ )(1 + q2m+2σ−1)

Dσ (j,m) = −q2m+2σ−2j (1 − qj−m)(1 + qj−m−2σ )

(1 + q2m+2σ )(1 + q2m+2σ+1)
.

Direct calculation shows that the expression for 1 − Bσ (j,m) − Dσ (j,m) in (5.4) can be
represented as

1 − Bσ (j,m) − Dσ (j,m)

= qm−j (1 − q2σ )(1 − q2σ+2m) + q2σ+m(qj+1/2 + q−j−1/2)(q1/2 + q−1/2)

(1 + q2m+2σ+1)(1 + q2m+2σ−1)
.

Thus, we have the action formulae for the operators J̆
(σ )

1 and q−J3 in the nonstandard
basis. By using these operators we may find an explicit form of many other representation
operators with respect to the nonstandard basis. For example, we have an explicit form of the
operators

J̆
(σ )

1 q−J3 − 1
2 [2σ ]q = (

q1/4J+ + q−1/4J−
)
q−J3/2

q−J3 J̆
(σ )

1 − 1
2 [2σ ]q = (

q−3/4J+ + q3/4J−
)
q−J3/2.

Therefore, we know how the operator

q−J3 J̆
(σ )

1 − qJ̆
(σ )

1 q−J3 − 1
2 [2σ ]q(1 − q) = q1/4(q−1 − q)J+q

−J3/2

acts. Similarly, we obtain the operators J−q−J3/2, q−J3/2J+ and q−J3/2J−. However, we do
not know yet how to calculate arbitrary representation operators by means of simple algebraic

operations with J̆
(σ )

1 and q−J3 . In order to calculate any representation operator, we have to
find the action of the inverse operator qJ3 . Unfortunately, we could not find an explicit form
for the action of this operator in an irreducible representation of suq(2).

6. Diagonalization of other representation operators

We can also diagonalize other operators of the representation Tj , which are related to families
of q-orthogonal polynomials from higher levels in the Askey-scheme [10]. We consider in
this section the case of a one-parameter family of operators, which are diagonalized by means
of the dual q-Hahn polynomials. Let us introduce an operator (cf (2.7) and (2.8))

I (σ ) := (σJ+ − σ−1J−)qJ3/2 +
(
q1/4 − q−1/4

)−1
qJ3 (6.1)

where σ ∈ C. We shall be looking for eigenfunctions of I (σ ) of the form

ηj
m(x; σ) = (

ax; q1/2
)
j−m

(bx; q)j+m. (6.2)
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The action of the operators qJ3 , J+q
J3/2 and J−qJ3/2 on the functions η

j
m(x; σ) is given by

formulae (3.3)–(3.5), respectively. Therefore, it is immediate that

I (σ )ηj
m(x; σ) = q−j/2

σx
(
q1/2 − q−1/2

) {(1 + σ 2qjx2)ηj
m(x, σ )

− [
1 − σ

(
q1/4 + q−1/4)q−j/2x + σ 2q−j x2]ηj

m(qx; σ)
}
. (6.3)

Taking into account relation (3.6), one can express the function η
j
m(qx; σ) in terms of the

η
j
m(x; σ):

ηj
m(qx; σ) =

(
1 − axq(j−m+1)/2

)(
1 − axq(j−m)/2

)
(1 − bxqj+m)(

1 − axq1/2
)
(1 − ax)(1 − bx)

ηj
m(x; σ). (6.4)

Substituting (6.4) into (6.3), we obtain

I (σ )ηj
m(x; σ) = q−j/2

σ
(
q1/2 − q−1/2

) Ax3 + Bx2 + Cx + D(
1 − axq1/2

)
(1 − ax)(1 − bx)

ηj
m(x; σ) (6.5)

where the coefficients A, B, C and D are equal to

A = σ 2a2q1/2(qj − q−m) + σab
(
1 + q1/2)qj/2[σ (qj/2 − qm/2)− aqj+1/4]

B = σa
(
1 + q1/2

)[
aq−m+(2j+1)/4 + σ

(
q−(j+m)/2 − qj

)
+ bqj+m/2

(
q1/4 + q−1/4

)]
+ σ 2b(qm − qj ) + a2bq1/2(q2j − 1) (6.6)

C = σ 2(qj − q−j ) + a2q1/2(1 − qj−m) +
(
1 + q1/2)[ab

(
1 − q(3j+m)/2)

− σq−1/4
(
bqm+j/2 + a

(
1 + q1/2

)
q−m/2

)]
D = σq−j/2(q1/4 + q−1/4) + a

(
1 + q1/2)(q(j−m)/2 − 1

)
+ b(qj+m − 1)

respectively. From (6.5) it is obvious that the relation

Ax3 + Bx2 + Cx + D = D
(
1 − axq1/2)(1 − ax)(1 − bx) (6.7)

must hold in order to obtain eigenvalues on the right-hand side of (6.5). The requirement (6.7)
is equivalent to equations

A = −a2bq1/2D B = a
[
b + q1/2(a + b)

]
D C = −[(1 + q1/2

)
a + b

]
D (6.8)

which have the unique solution

a = σq−(2j+1)/4 b = σq(1−2m)/4. (6.9)

Consequently,

D = σqj/2
(
q(2j+2m+1)/4 + q−(2j+2m+1)/4

)
.

We may formulate thus the following:
For any value of σ the operator I (σ ) can be diagonalized and its eigenfunctions are

ηj
m(x; σ) = (

σq−(2j+1)/4x; q1/2
)
j−m

(
σq(1−2m)/4x; q

)
j+m

. (6.10)

The functions η
j
m(x; σ),m = −j,−j + 1, . . . , j , are linearly independent because they

correspond to distinct eigenvalues {j + m + 1/2}q :

I (σ )ηj
m(x; σ) = {j + m + 1/2}qηj

m(x; σ). (6.11)

The number of these eigenfunctions coincides with a dimension of the representation Tj .
For this reason, these functions constitute another nonstandard basis of the representation
space Hj .
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Let us now discover how the eigenfunctions η
j
m(x; σ) are related to the canonical basis

f
j
m(x). This time we will need a generating function for the dual q-Hahn polynomials

(see [10], p 78):

Rn(λ(x); γ, δ,N |q) := 3φ2

(
q−n, q−x, γ δqx+1

γ q, q−N

∣∣∣∣ q; q

)
(6.12)

where λ(x) := q−x + γ δqx+1 and n = 0, 1, 2, . . . , N . These polynomials have a generating
function of the form (see [10], p 79)

(q−Nt; q)N−k · 2φ1

(
q−k, δ−1q−k

γ q

∣∣∣∣ q; γ δqk+1t

)

=
N∑

n=0

(q−N ; q)n

(q; q)n
Rn(λ(k); γ, δ,N |q)tn k = 0, 1, 2 . . . , N. (6.13)

By using the well-known relations (a; q)n(−a; q)n = (a2; q2)n and 1φ0(q
−n; q, z) =

(zq−n; q)n, one can show that in the particular case of γ = δ = −1 the generating function
(6.13) reduces to the expression

(q−Nt; q)N−k(q
1−kt; q2)k =

N∑
n=0

(q−N ; q)n

(q, q)n
Rn(λ(k); −1,−1, N |q)tn. (6.14)

From (6.14) it is now immediate that

ηj
m(x; σ) =

∑
n

(
q−j ; q1/2

)
n(

q1/2; q1/2
)
n

Rn

(
λ(j+m); −1,−1, 2j |q1/2)(σq(2j−1)/4x

)n
. (6.15)

Taking into account the explicit form of the canonical basis (2.3), relation (6.15) is equivalent
to the expansion

ηj
m(x; σ) =

∑
m′

α
j

m′m(σ ; q)f
j

m′(x) (6.16)

where the connection coefficients α
j

m′m(σ ; q) are equal to

α
j

m′m(σ ; q) = (− q−1/2σ
)j+m′

[ 2j

j+m′
]
q1/2[ 2j

j+m′
]1/2
q

Rj+m′
(
λ(j + m); −1,−1, 2j |q1/2

)
. (6.17)

The basis
{
η

j
m(x; σ)

}j
−j

is orthogonal but not normalized. At σ = −i these basis
elements can be normalized with the aid of the orthogonality relation for q-Hahn polynomials
(see formula (7.2.22) in [9]). In this case, the functions

η̂j
m(x; −i) = cmηj

m(x; −i)

with

cm =
((−q1/2; q1/2

)
2j

(
q−j ; q1/2

)
n

(
1 − qn+1/2

)(
q; q1/2

)
2j

(
qj+1; q1/2

)
n
(1 − q)qn/2

)1/2

qn[j−(n−1)/4] n = j + m

form an orthonormal basis of the space Hj . The matrix
(
â

j

m′,m(σ,−i)
)j
m′,m=−j

with

â
j

m′,m(σ,−i) = cma
j

m′,m(σ,−i), which connects the bases
{
f

j

m′
}

and
{
η̂

j
m

}
, is unitary.

We can also evaluate the action of the operator q−J3/2 on the basis functions η
j
m(x; σ). To

this end we use the q-difference equation (3.7.5) from [10] for the dual q-Hahn polynomials.
For Rn(λ(t)) ≡ Rn

(
λ(t); −1,−1, 2j |q1/2

)
, t = j + m, this equation can be written as

q−n/2Rn(λ(t)) = 1 − q(t−2j)/2

1 − q(2t+1)/2
Rn(λ(t + 1)) +

q(t−2j)/2 − q(2t+1)/2

1 − q(2t+1)/2
Rn(λ(t − 1)). (6.18)
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Since q−J3/2xn = q−(n−j)/2xn, one can apply equation (6.18) to expansion (6.15) and obtain
the formula

q−J3/2ηj
m(x; σ) = qj/2 1 − q(m−j)/2

1 − qj+m+1/2
η

j

m+1(x; σ) + qj/2 q(j+m)/2
(
q−j − q(m+j+1)/2

)
1 − qj+m+1/2

η
j

m−1(x; σ).

By using the operators I (σ ) and q−J3/2, one can find explicit forms of some other operators of
the representation Tj (cf section 5).

7. Concluding remarks

In sections 3 and 6 we have explicitly constructed nonstandard bases (3.10) and (6.10),
respectively, for representations of the quantum algebra suq(2). The relations between
the standard and nonstandard basis functions are, respectively, given by equations (3.16)
and (6.16).

The representations were realized in a space of functions of one variable. As was already
emphasized in [1], it would be of interest to consider other realizations, for instance, in spaces
of functions on a two-dimensional sphere, as in [12].

From the theory of representations of Lie groups it is known that for some cases connection
coefficients between two bases for a fixed irreducible representation of some Lie group G are at
the same time Clebsch–Gordan coefficients for a tensor product of irreducible representations
of another Lie group G′ (see, for example, [5], vol 2, section 12.3.5). There exist similar
phenomena in the case of quantum groups as well. So one of the referees of our paper
raised the question whether the coefficients (3.18) are also Clebsch–Gordan coefficients of
some other algebra. The point is that the coefficients (3.18) diagonalize the operator (2.7),
which contains the term cqJ3 . This circumstance complicates the problem of finding such a
connection. Therefore this problem will be studied separately.
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